REPORT NO. FAA-RD-77-85

LASER DOPPLER VELOCIMETER MEASUREMENTS OF B-747 WAKE VORTEX CHARACTERISTICS

M. R. Brashears
A. D. Zalay
LOCKHEED MISSLES \& SPACE COMPANY, INC. HUNTSVILLE RESEARCH \& ENGINEERING CENTER 4800 Bradford Drive Huntsville AL 35807

SEPTEMBER 1977
FINAL REPORT

DOCUMENT IS AVAILABLE TO THE U.S, PUBLIC
THROUGH THE NATIONAL TECHNICAL
INFORMATIQN SERVICE, SPRINGFIELD, VIRGINIA 22161

> Prepared for
> U.S. DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION Systems Research and Development Service Washington DC 20591

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

NOTICE

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report.

PREFACE

The laser Doppler velocimeter measurements of wake vortex characteristics described in this report were carried out by Lockheed Missiles \& Space Company, Inc., Huntsville Research \& Engineering Center working in conjunction with AeroVironment, Inc., under the "Wake Decay near the Ground" program sponsored by the U.S. Department of Transportation. LockheedHuntsville's role in the program consisted of operating the Lockheed Mobile laser Doppler velocimeter system and collecting measurements of vortex characteristics with the system and processing and analyzing the measurements to determine the dominant vortex decay characteristics.

The following Lockheed-Hunts ville personnel made significant contributions to this effort: C.E. Craven, B. B. Edwards, J. L. Jetton, A. J. Jordan, M. C. Krause, T.R. Lawrence, and K.R. Shrider. The authors are grateful to the Optics Branch at NASA-Marshall Space Flight Center for making their filter bank and signal processor available for this study and to J. W. Bilbro and H. B. Jeffreys at NASA-MSFC and to Bill Keenum, Earl Lucas, and Rick Bynum at Computer Sciences Corporation for processing the measurements obtained with the NASA-MSFC filter bank and signal processor. The authors are grateful to Dr. J. N. Hallock, TSC Contracting Officer's Technical Monitor, and to Dr. D.C. Burnham, staff scientist at TSC, for their technical contributions and able assistance during the performance of this contract.
metric conversion factors

CONTENTS

Page

PREFACE

INTRODUCTION 1
INSTRUMENTATION 3
2.1 Laser Doppler Velocimeter System 3
2.1.1 Arc-Scan Mode of Operation 12
2.1.2 Finger Scan Mode of Operation 14
2.2 Data Processing 17
DESCRIPTION OF EXPERIMENTAL TESTS 21
3.1 Flight Test Program 21
3.2 Operation of Laser Doppler Velocimeter 23 Remote Sensor
23
3.2.1 Calibration
23
23
3.2.2 Wake Surveys
3.2.2 Wake Surveys
28
RESULTS OF WAKE VORTEX MEASUREMENTS
4.1 Vortex Roll-Up 28
4.1.1 Initial Spanwise Downwash Distribution 28
4.1.2 Vortex Pair Characteristics 60
4.1.3 Multiple Vortex Characteristics 64
4.2 Vortex Transport 68
4.2.1 Near Wake Vortex Tracks 68
4.2.2 Far Wake Vortex Tracks 68
4.2.2.1 Low-Speed Data 71
4.2.2.2 High-Speed Data 71
4.3 Vortex Decay 76
4.3.1 Decay of Vortex Rotational Velocity 81
4.3.2 Core Radius Time History 83
4.3.3 Circulation Decay 83
4.3.4 Comparis on of Vortex Decay Trends for Different Flight Configurations 89

CONCLUSIONS
REFERENCES
Appendix
A External Logs for Rosamond Tests
B Sample Output from Vortex Azimuth Display and Vortex Tracker Program for Rosamond Flyby 25 B-1
C Sample Output from NASA-MSFC LDV Data Processing Routines for Rosamond Flyby 47
D Wake Vortex Tracks Computed from Low-Speed Measurements

D-1
E Wake Vortex Tracks Computer from High-Speed Measurements

E-1
Time History of Vortex Rotational Velocity F-1
Time History of Vortex Curculation
G-1
Report of Inventions

LIST OF TABLE
Table
Summary of B-747 Flight Parameters

LIST OF ILLUSTRATIONS
1 Lockheed LDV System Monitoring Wake Vortex Generated by a B-747 Aircraft at the Rosamond California, Test Site

Component Configruation of the Lockheed Laser Doppler Velocimeter
View Through Side Window of Laser Doppler Velocimeter Depicting Scanning Optics (Note relection of telescope primary mirror in elevation scanning mirror)
Interior View of Laser Doppler Velocimeter Van Looking Forward (Depicted in foreground is elevation scanning mirror on left and laser on right. Teleprinter in right rear.)

4
6

4

LIST OF ILLUSTRATIONS (Continued)

Figure

Page

5

Interior View of Laser Doppler Velocimeter Van (Display and scanner controls in first rack, computer in second rack, digital tape unit aft, and optics package on right.)
Definition of Laser Doppler Velocimeter Output Signature
Geometry for Arc Scanning for Rosamond Wake Vortex Tests 13Magnitude of Characteristic LDV Velocity Com-ponent Observed During One Finger-Scan Sweep
Data Processing Sequence Carried Out for the Rosamond Wake Decay Measurements 18
Spoiler and Flap Arrangement on B-747 Aircraft 22
Location of Lockheed LDV During the Rosamond Wake Vortex Measurements 26
Overhead Arc Scan Configuration Illustrated for Rosamond Flyby 11 27
$\left|\mathrm{V}_{\mathrm{pk}}\right|$ as a Function of Lateral Distance for Rosamond B-747 Flyby 8 29
$\left|\mathrm{V}_{\mathrm{pk}}\right|$ as a Function of Lateral Distance for Rosamond B-747 Flyby 11 36$\mid \mathrm{V}_{\mathrm{pk}}$ as a Function of Lateral Distance for $^{\text {as }}$Rosamond B-747 Flyby 1245
$\left|V_{p k}\right|$ as a Function of Lateral Distance for Rosamond B-747 Flyby 13 52Magnitude of Line-of-Sight Velocity Componentfor Rosamond B-747 Flyby 11 at $\mathrm{t} \sim 2 \mathrm{sec}$, As-suming a Fully Rolled-Up Vortex Pair61
Magnitude of Wake Vortex Velocity Distribution with 0 Spoilers 63
Circulation as a Function of Radius for 0 Spoiler Flight Configuration 65
Magnitude of Line-of-Sight Velocity Componentfor Rosamond B-747 Flyby 11 at $\mathrm{t} \sim 2 \mathrm{sec}$, AssumingMultiple Wake Vortices67
Figure

Vortex Descent as a Function of Downstream Distance for Flybys with 30/30 Flaps, 0 Spoilers

Page
69Vortex Spacing as a Function of Downstream Distance
for Flybys with 30/30 Flaps, 0 Spoilers 70
Comparison of Photographic and LDV Measurements for Rosamond B-747 Flyby 27 72
Comparison of Photographic and LDV Measurements for Rosamond B-747 Flyby 28 77
Decay of Magnitude of Wake Vortex Rotational Velocity Component for Flyby 44 82$\left|\mathrm{V}_{\mathrm{pk}}\right|$ as a Function of Time for Flyby 27 UsingPhotographic Tracks to Locate the Vortex Center84
$\left|\mathrm{V}_{\mathrm{pk}}\right|$ as a Function of Time for Flyby 28 Using
Photographic Tracks to Locate the Vortex Center 85
Vortex Core Radius as a Function of Time for Flyby 27 86
Vortex Core Radius as a Function of Time for Flyby 28 87
Vortex Core Radius as a Function of Time for Flyby 44 88
Comparison of Magnitude of Wake Vortex Rotational Velocity for B-747 Flybys With and Without Spoilers 90
Comparison of Magnitude of Wake Vortex Rotational Velocity Component for B-747 With and Without Flaps 91
Comparison of Magnitude of Wake Vortex Rotational Velocity Component for B- 747 With and Without Gear
Down 92

Comparis on of Magnitude of Wake Vortex RotationalVelocity Component for B-747 in Lequel Flight and inDescending Flight93

1. INTRODUCTION

Wake vortex transport and decay parameters near the ground are important factors in determining safe aircraft separation distances for terminal areas. For an operational Wake Vortex Avoidance System (WVAS), a knowledge of the location and intensity of wake vortices near the terminal area is necessary to determine the minimum-delay safe spacings. Under light crosswind conditions, a wake vortex can remain in the approach corridor, and the minimum aircraft separation distance is dictated primarily by the wake decay process near the ground. Therefore, an important consideration in determining safe aircraft separations is the decay of the wake vortex near the ground. While numerous vortex decay theories have been proposed, there are little full-scale experimental data available for comparison. Experimental vortex decay data near the ground are also lacking for aerodynamic wake minimization concepts where variations in aircraft geometry are used to tailor the wake vortex flow. Flight tests by NASA have shown that certain flap and spoiler settings can reduce the imposed rolling moments on following aircraft (in the near wake); however, wake vortex measurements near the ground for full-scale aircraft with different wake minimization concepts are needed. Thus, for both wake vortex avoidance and wake vortex minimization techniques, a knowledge of the vortex-rollup, transport, and decay characteristics near the ground is important.

To determine the behavior of aircraft wake vortices at low altitudes, a flight test program was conducted by DOT/NASA. The primary goal of the test program was to measure the wake vortex decay process behind a conventional jumbo jet as a function of altitude above ground, flap and spoiler settings, and different flight configurations. To isolate the influence of air craft and flight parameters on the wake decay process, the flight tests were conducted at the Rosamond Dry Lake test area in California during the
early morning hours when calm atmospheric conditions prevailed. The Rosamond wake decay measurements were sought to quantify the effect of burst, link and viscous decay parameters on the wake vortex dissipation process. The wake decay measurements were also sought to demonstrate the effectiveness of recently developed vortex minimization concepts. In addition to the wake decay measurements, the flight tests were also focused on measuring the wake vortex rollup and transport phenomena in ground plane proximity.

The Rosamond flight tests involved airborne and ground-based meteorological sensors, an acoustic Doppler system, a mobile laser Doppler velocimeter, a flow visualization using smoke and balloons. In this report the measurements obtained with the laser Doppler velocimeter system (LDV) are discussed including: (1) the initial downwash field; (2) the lateral and horizontal transport of the coherent wake vortex; and (3) the decay of the vortex flow in terms of the time history of the circulation, peak tangential velocity, and the diffusion of the viscous core radius. While the application of LDV techniques for the study of wake yortex flows is not novel, this is the first time, to our knowledge, that the details of the vortex formation and decay process have been extracted for a full-scale aircraft using an LDV system. In addition to providing detailed wake measurements for comparison with available theoretical and empirical models, the results show the influence of changes in flap, spoiler, and landing gear settings on the wake characteristics.

The report discusses the LDV wake vortex measurements including the instrumentation used, the experimental test sequence, and the results of the wake measurements in terms of the vortex-rollup, transport, and decay trends, and a comparis on of the wake vortex decay characteristics for different configurations. A brief discussion of the LDV wind measurements is given followed by the overall conclusions and recommendations.

2. INSTRUMENTATION

The wake vortex and atmospheric wind measurements were carried out by means of a scanning LDV system contained in a mobile van. Preliminary processing of the data was carried out with a SEL computer aboard the van. Reduction and analysis of the vortex and wind signatures were carried out by off-line processing software using a Univac 1108 and a PDP11 computer. A description of the instrumentation and the data processing methods for the Rosamond tests is given in terms of the LDV system configuration and the data processing techniques used.

2.1 Laser Doppler Velocimeter System

The Lockheed-Huntsville LDV was used to obtain wake vortex measurements during the Rosamond flight tests. A photograph of the van-mounted LDV system is given in Fig. 1. The wake measurements were accomplished as follows: (l) the wake generated by the aircraft was scanned by the CO_{2} laser; (2) the radiation backscattered from the aerosol in the wake was collected; (3) the radiation was photomixed with a portion of the transmitted beam on a photodetector; and (4) the intensity and Doppler shift frequency of the signal were displayed.

The difference in frequency between the transmitted and backscattered signal generated at the photodetector, the Doppler shift frequency, is a measure of the aerosol's absolute line-of-sight velocity within the laser focal volume

$$
\begin{equation*}
|\overline{\mathrm{V}}|=\frac{\lambda \Delta \mathrm{f}}{2 \cos \gamma}, \tag{1}
\end{equation*}
$$

where $|\bar{V}|$ is the magnitude of the velocity component in the region being sensed, λ is the laser radiation wavelength $(10.6 \mu \mathrm{~m}), \Delta f$ is the Doppler shift,

Fig. 1 - Lockheed LDV System Monitoring Wake Vortex Generated by a B-747 Aircraft at the Rosamond, California, Test Site

2. INSTRUMENTATION

The wake vortex and atmospheric wind measurements were carried out by means of a scanning LDV system contained in a mobile van. Preliminary processing of the data was carried out with a SEL computer aboard the van. Reduction and analysis of the vortex and wind signatures were carried out by off-line processing software using a Univac 1108 and a PDPll computer. A description of the instrumentation and the data processing methods for the Rosamond tests is given in terms of the LDV system configuration and the data processing techniques used.

2.1 Laser Doppler Velocimeter System

The Lockheed-Huntsville LDV was used to obtain wake vortex measurements during the Rosamond flight tests. A photograph of the van-mounted LDV system is given in Fig. 1. The wake measurements were accomplished as follows: (1) the wake generated by the aircraft was scanned by the CO_{2} laser; (2) the radiation backscattered from the aerosol in the wake was collected; (3) the radiation was photomixed with a portion of the transmitted beam on a photodetector; and (4) the intensity and Doppler shift frequency of the signal were displayed.

The difference in frequency between the transmitted and backscattered signal generated at the photodetector, the Doppler shift frequency, is a measure of the aerosol's absolute line-of-sight velocity within the laser focal volume

$$
\begin{equation*}
|\overline{\mathrm{V}}|=\frac{\lambda \Delta \mathrm{f}}{2 \cos \gamma} \tag{1}
\end{equation*}
$$

where $|\overline{\mathrm{V}}|$ is the magnitude of the velocity component in the region being sensed, λ is the laser radiation wavelength ($10.6 \mu \mathrm{~m}$) , $\Delta \mathrm{f}$ is the Doppler shift,

Fig. 1 - Lockheed LDV System Monitoring Wake Vortex Generated by a B-747 Aircraft at the Rosamond, California, Test Site
and γ is the angle subtended by the velocity vector and the optic system line of sight. From Eq. (1), it is noted that the Doppler shift is a direct and absolute measure of aerosol velocity component and a frequency shift of 188 kHz corresponds to a $1 \mathrm{~m} / \mathrm{sec}$ magnitude line-of-sight velocity.

A sketch of the optical and electronic equipment for measuring the intensity and frequency spectrum of the coherent backscatter from the focal volume is shown in Fig. 2, and described in more detail in Refs. 1, 2, and 3. Photographs of the optical and electronic equipment for measuring the aerosol backscatter are shown in Figs. 3, 4, and 5.

The Lockheed LDV system used in the Rosamond wake vortex tests monitors the magnitude of the velocity component of ambient atmospheric particulate matter within its instantaneous sensing volume. The pertinent operating characteristics of the LDV are summarized as follows:

Performance

1. Threshold of Magnitude of Velocity Component: $0.5 \mathrm{~m} / \mathrm{sec}$
2. Range of Magnitude of Velocity Component: 0.5 to $28 \mathrm{~m} / \mathrm{sec}$

Sample Rate

1. Low Data Rate: 70 Hz
2. High Data Rate: 500 Hz (using the NASA filter bank processor).

Spatial Resolution

1. Range Accuracy: $\pm 0.4 \mathrm{~m}$ at $30 \mathrm{~m}, \pm 44 \mathrm{~m}$ at 300 m
2. Elevation Angle Accuracy: ± 0.25 deg.

Fig. 2 - Component Configuration of the Lockheed Laser Doppler Velocimeter

Fig. 3 - View Through Side Window of Laser Doppler Velocimeter Depicting Scanning Optics (Note reflection of telescope primary mirror in elevation scanning mirror)

Fig. 4 - Interior View of Laser Doppler Velocimeter Van Looking Forward (Depicted in foreground is elevation scanning mirror on left and laser on right. Teleprinter in right rear.)

Fig. 5 - Interior View of Laser Doppler Velocimeter Van (Display and scanner controls in first rack, computer in second rack, digital tape unit aft, and optics package on right.)

Scan Modes

1. Range or Line Scan
2. Horizontal Wind
3. Elevation
4. Vertical Wind
5. Altitude
6. Azimuth
7. Wind Direction
8. Line-of-Sight Velocity Component
The characteristic output signal from the LDV system is an intensity versus frequency spectrum illustrated in Fig. 6. The output parameters $V_{p k}$ and $V_{m s}$ are indicative of the magnitude of the velocity component in the LDV focal volume corresponding to the fastest particle (or particles) above the amplitude threshold and the particle (or particles) having the highest backscatter, respectively. The bandwidth, N, is a measure of the range of particle velocities in the focal volume. Intensity and frequency thresholds are applied to the signal, as shown, to eliminate noise and to improve the resolution of the system. For example, in the vortex tracking mode the frequency threshold of the LDV is set relatively high to filter out the low-frequency signal associated with the ambient wind.

The velocity resolution of the LDV is determined by the signal-to-noise ratio characteristics of the system as well as the atmospheric aerosol particlesize distribution. During the Rosamond tests, no difficulty was encountered detecting the high velocity regions, as high as $28 \mathrm{~m} / \mathrm{sec}$, associated with the wake vortex phenomena. The very low ambient winds, on the order of 1 to 2 $\mathrm{m} / \mathrm{sec}$, were also detected by the LDV at Rosamond which were above the system's threshold of $0.5 \mathrm{~m} / \mathrm{sec}$.

The spatial resolution of the LDV is determined by the size of the laser beam sensing volume where the beam is focused. The extent of the laser Doppler system sensing volume is a function of range which is shown in the following table $\left(\Delta r=9.84 \times 10^{-4}\left(\mathrm{~m}^{-1}\right) \mathrm{R}^{2}\right)$ obtained from calibration measurements (Ref.4).

$$
\begin{aligned}
\mathrm{v}_{\mathrm{pk}}= & \begin{array}{l}
\text { Magnitude of velocity component of highest channel } \\
\text { above amplitude threshold }
\end{array} \\
\mathrm{v}_{\mathrm{ms}}= & \begin{array}{l}
\text { Magnitude of velocity component of the channel } \\
\text { having the peak signal }
\end{array}
\end{aligned}
$$

Fig. 6 - Definition of Laser Doppler Velocimeter Output Signature

	Sensing Volume Length (Half Power Value) $\Delta r(m)$
Range to Focus, R(m)	5.68
76	9.84
100	22.73

For example, if the LDV system is tracking wake vortices at a range of 60 m , a needle-shaped volume of the vortex 3.54 m long and 4 mm in diameter: is sampled. During the Rosamond tests, the typical vortex range was 60 m so that the spatial resolution due to the spreading of the focal volume was 3.54 m .

In addition to the finite focal volume, the sampling rate of the LDV plays an important role in determining the overall resolution of the system. During the Rosamond tests, measurements were obtained at two data rates, at 70 and 500 Hz . The lower data rate was achieved with a scanning spectrum analyzer and the higher data rate with a filter bank provided by NASA-MSFC. Since the spatial resolution of the flow is a function of the selected data rate and scan mode, the resolution must be considered separately for each type of operation; the arc scan, finger scan, and LDV modes.

2.1.1 ArcaScan Mode of Operation

In the arc-scan mode, the LDV interrogates the vortex wake at a fixed range along an arc normal to the aircraft flight path. As shown in Fig. 7, the sensing volume is moved between two elevation limits (the typical cone angle is $2 \alpha=30 \mathrm{deg}$) at a fixed rate (the typical scan rate is 0.5 Hz) while the vortex drifts past the scanned arc. Thus, the arc scan measurements indicate the spanwise downwash distribution in the wake of the aircraft, provided that vortex range is sufficiently close to the selected scan range.

Fig. 7 - Geometry for Arc Scanning for Rosamond Wake Vortex Tests

During one arc scan of the vortex wake, the vortex flow field is sampled at discrete evenly spaced intervals along the arc as shown in Fig. 7. The separation between successive sample points, ΔS, based on the sampling rate f, range R, and cone angle 2α is given by

$$
\begin{equation*}
\frac{\Delta S}{R}=\frac{2 \pi}{360^{\circ}} \frac{2 \alpha / \mathrm{sec}}{f} \tag{2}
\end{equation*}
$$

where $2 \alpha / \mathrm{sec}$ is the elevation angle scan rate at a frequency of 0.5 Hz . For a typical arc scan wake vortex measurement at Rosamond, $f=500$ and 70 Hz , $R=60 \mathrm{~m}$ and $2 \alpha=30 \mathrm{deg}$, so that the wake vortex flow field is sampled every 0.06 and 0.4 m at the high- and low-data rates, respectively. Since the range of vortex core diameters measured for a B-747 aircraft is 0.3 to 2 m based of tower flybys (Ref.5), the sampling rate of the LDV system is sufficient to obtain several cuts through the vortex core along the arc (or essentially in the spanwise direction), particularly at the high data rate.

The drift of the wake vortex affects the resolution of the vortex measurements in the vertical direction. During a single scan frame, the vortex is translated by an amount depending on the cross-wind velocity and on the mutual induction of the complete vortex field. Since the tests were conducted during the early morning hours, cross winds were generally negligible and the primary motion of the wake vortex was in the downward direction. Assuming a typical vortex descent rate of $2 \mathrm{~m} / \mathrm{sec}$, and a typical scan rate of 0.5 Hz , this implies that a spanwise traverse of the wake vortex is taken every 2 m in the vertical plane in the arc-scan mode. Based on these values, it is noted that the LDV arc-scan technique can observe the detailed characteristics of the wake vortex phenomena which are larger in extent than 0.06 and 2 m in the horizontal and vertical directions, respectively.

2.1.2 Finger-Scan Mode of Operation

During the Rosamond flight tests, 56% of the LDV wake vortex measurements were conducted using the finger-scan mode. In the finger-scan mode, both the range and elevation of the laser beam were varied simultaneously and
linearly with time, producing a multiple lobe scan pattern with the laser beam as shown in Fig. 8. The settings and sampling rates for the finger-scan mode are given in Appendix A. The distance between sample points for the finger-scan mode is higher
than for the previous arc-scan mode. From Appendix A it is noted typical range scan excursion for the finger scan Appendix A, it is noted that the range rate is 3.5 Hz . It follows that the beam-scar Because the LDV measurements were sampled every 2 and 14.3 msec at the low and high data rates, the wake vortex flow field is measured at every 1.5 and 10.5 m increment in range, respectively. Thus, the finger scan mode can interrogate a large cross-sectional area rapidly, and this is ideal for vortex tracking. In addition, the LDV finger scan measurements contain essential information regarding the wake vortex phenomena.

The characteristic line-of-sight component as a function of range and elevation angle during one finger-scan sweep is shown in Fig.8. A pair of double-peak patterns is noted in the line-of-sight velocity profile as a function of elevation angle. The maximum values occur at the elevation angles where the line of sight is tangent to the viscous core radius of the vortex. Thus, the mean elevation angle of the local maxima in the $V_{p k}$ vs θ curve yields the elevation angle of the wake vortex, $\theta_{\text {vortex }}=\left(\theta_{1}+\theta_{2}\right) / 2$. Similarly, the difference between the two elevation angles is a measure of the vortex viscous core radius, $r_{\text {vortex }} 1=R_{1}\left|\tan \frac{\theta_{1}-\theta_{2}}{2}\right|$. The peak tangential velocity and core cirdulation of the vortex is given by $V_{\text {pk }}$ vortex $1,=$ $\left(V_{\mathrm{pk} \theta_{1}}+\mathrm{V}_{\mathrm{pk} \theta_{2}}\right) / 2$ and $\Gamma_{\text {vortex } 1}=2 \pi \mathrm{R}_{\text {vortex } 1} \mathrm{~V}_{\mathrm{pk} \text { vortex } 1}$, assuming circular symmetry. The peak line-of-sight component at the two edges of the vortex, $V_{\mathrm{pk}} \theta_{1}$ and $\mathrm{V}_{\mathrm{pk}} \theta_{2}$ are not necessarily equal due to a contribution by the other vortex and the ambient winds. The range of the vortex, R_{1}, is given by the local maximum in the line-of-sight component at the two edges of the in the bottom of Fig.8, and is not affected by the ambient winds. Based on the characteristic LDV signature observed for one scan, it is noted

Fig. 8 - Magnitude of Characteristic LDV Velocity Component Observed
that several successive finger scans contain the essential decay history of the wake vortices, provided that at least two sample points are obtained for each vortex, one upwash and one downwash measurement, where the line of sight is tangent to the viscous core and the mean vortex range is within the LDV focal volume.

2.2 DATA PROCESSING

The output from the LDV system consisting of the coherent backscatter intensity versus frequency from the focal volume as well as the location of the focal volume in space was processed to yield the aircraft downwash field and the wake vortex characteristics. Reduction and analysis of the LDV measurements were carried out as follows: (1) the low-speed signal was digitized and stored on magnetic tape by the onboard SEL computer and subsequently processed off-line on a Univac 1108 computer, and (2) the high-speed data were both digitized and processed off-line on a Uniyac 1108 computer and the vortex tracks computed on a PDP 11 computer. A flow chart of the data processing sequence used for the Rosamond wake decay study is shown in Fig. 9. The software system for processing the low-speed and high-speed LDV data is described in more detail in Refs. 4 and 6, respectively.

The high-speed processor utilized the raw range and elevation signal, while the low-speed processor used the raw range and commanded elevation signal to determine the location of the LDV focal volume. As a result, the magnitude of the velocity component versus elevation angle measured with the high-speed processor showed scatter due to the ± 0.25 deg elevation angle resolution. In addition, noise was present in the elevation angle versus time distribution from the high-speed data characterized by a square wave with a frequency of 14 Hz and an amplitude of 0.7 deg . This was believed to be a sympton of a processing or decode problem. The normal scatter in the elevation angle was not noticeable at the low data rate, but the low-speed data did show a finite lag in the scan pattern. A time lag of approximately 0.3 sec , and a corresponding lag in the position of the LDV focal volume depending on the selected scan rate was observed. The lag in the system resulted from the difference between commanded versus actual angular position of the scanning mirror.

Fig. 9 - Data Processing Sequence Carried Out for the Rosamond Wake

The manner in which the wake vortex measurements were processed from both the high-speed and low-speed data is summarized as follows. The frequencies and amplitudes associated with the laser Doppler signal were sampled at fixed intervals. The spectrum was recorded if it was above the frequency and amplitude threshold settings (Fig.6). The amplitude and frequency threshold settings for the Rosamond tests are given in the log sheets in Appendix A. From the array of recorded frequency and intensity points, the magnitude of the line-of-sight velocity component was computed, and the vortex parameters including location and velocity distribution were determined.

To compute the wake vortex transport and decay characteristics from the low-speed line-of-sight velocity component magnitude, the Rosamond measurements were analyzed using the "Velocity Azimuth Display and Vortex Track Program" (Ref.5). Based on previous experience with the program, the following parameters were selected for the analysis of the Rosamond data:

INTVEL = $2 \quad$ Flag
INTVEL = 1, Velocity oriented vortex determination INTVEL $=2$, Intensity oriented vortex determination
NPSUF = $4 \quad$ Sufficient number of points to determine vortex
APERCT $=0.1 \quad$ Fraction of points below the maximum velocity or intensity points
Fraction of points within the correlation circle where Q is at least APERCT fraction of the maximum Q (Q is velocity or intensity as determined by INTVEL)

RPERCT $=0.3$

RPERCT $=0.3$

EPERCT $=2.0$

NOISEF $=0$
$\mathrm{ADJI}=0.0$
Fraction of number of points in correlation circle used for determining vortex 1 (required for determination of vortex 2)
Fraction of aircraft wing span used for correlation radius
Fraction of correlation radius from vortex 1 for excluding initial point of vortex 2
Noise floor
Intensity adjustment (fraction of noise floor added to total intensity).

A sample output from the VAD and Vortex Track Program is presented in Appendix B. The intermediate sorting parameters used in determining the location of the vortex core region are also given in the printouts along with "scatter plots" indicating the line-of-sight velocity magnitudes. From the typical line-of-sight velocity magnitude illustrated in Appendix B, the time history of the vortex wake was determined for many of the flybys.

In parallel with the low-speed data acquisition and processing, the LDV signal was also fed into the high-speed NASA-MSFC data processing system as illustrated in Fig. 9. The high-speed data processing technique is similar to the low-speed technique described earlier, and is described in detail in Ref.6. A sample output from the NASA-MSFC LDV data processing routines is shown in Appendix C, including the listing of the magnitude of the raw line-of-sight velocity component, the plot of $\left|V_{\text {pk }}\right|$ versus elevation angle, and plots of the vortex trajectory.

Fig. 10 - Spoiler and Flap Arrangement on B-747 Aircraft was always 41 deg) in addition to the the spoilers deployed (the extension angle speed, weight, and flap, landing gear, and spoiler settings for each of the flybys is given in Table 1.

3.2 OPERATION OF LASER DOPPLER VELOCIMETER REMOTE SENSOR

The LDV system was set up and calibrated at the Rosamond test site prior to conducting the actual wake surveys. A discussion of the calibration procedure and the conduct of the wake vortex surveys is summarized below.

3.2.1 Calibration

During the set-up process, the optical bench was leveled with the external van jacks using a bubble level for reference (estimated accuracy of $\pm 0.5 \mathrm{deg})$. For the second day of the tests, the scanner was offset 45 deg using a tri-square for reference (estimated accuracy of $\pm 0.5 \mathrm{deg}$). Prior to the actual wake surveys, the elevation and azimuth angle readouts from the LDV were calibrated. The calibration involved pointing the optical system at the sun and comparing the observed elevation and azimuth angle readouts with those given in the ephemeris. The results indicated that a. -3 deg and ± 139 deg correction should be applied to the raw elevation and azimuth readouts from the LDV, respectively.

During the Rosamond tests, the range resolution and signal-to-noise ratio characteristics of the LDV were not recalibrated. The range and signal-to-noise ratio calibrations taken a few months earlier and documented in Ref. 4 were assumed to be representative of the systems overall performance.

3.2.2 Wake Surveys

During the Rosamond wake decay tests, 53 aircraft flybys were recorded with the LDV system (flyby 36 was lost due to a loss in electrical power). The test conditions and the LDV scan, range, and elevation settings for the

Table 1
SUMMARY OF B-747 FLIGHT PARAMETERS

[^0]Rosamond tests are summarized in the \log sheets given in Appendix A, while a list of the flight parameters is given in Table 1. Primarily, those flybys have been processed from the wake measurements where flow visualization and photographic data (photographs were taken of vortices at 1 sec increments) were available for comparison with the LDV measurements.

To maximize the amount of data collected regarding wake vortex trajectories, velocity profiles, and decay rates, the LDV was operated in different scan modes including: arc-scan and, finger-scan configurations. The wake vortex surveys were conducted in the following manner.

On the first test day, the LDV was located directly under the flight path (Fig. 11) and scanned arcs in a plane perpendicular to the flight path (Fig. 12) with a complete scan every 2 sec . Scans were at a fixed range until the vortex passed through the scan arc, at which time the sensor range was lowered and remained fixed again until the vortex descended through the new range. The objective of the overhead arc scan measurements was the measurement of the initial downwash field and the wake vortex roll-up process.

On the second test day, the LDV was moved 60 m north of the flight path (Fig. 11) and scanned simultaneously in elevation and range (finger-scan mode) at a frequency of 0.2 Hz , and 2 to 2.5 Hz , respectively. The objective of the finger scan measurements was to track the location of the vortex pair and to observe the vortex decay rates. The coordinated variations in range and elevation settings for the finger scan mode were selected on the basis of the aircraft wake vortex parameters. In addition, during the last sorties, the azimuth angle was changed during the run to 90 - and 180-deg angles to scan both down the vortex (axially) and to follow the vortex drift away from the LDV.

Fig. 12 - Overhead Arc Scan Configuration Illustrated for Rosamond Flyby 11

E

4. RESULTS OF WAKE VORTEX MEASUREMENTS

The LDV measurements obtained during the Rosamond tests have been analyzed to determine the dominant characteristics of the B-747 wake. In the following discussion, the observed wake vortex characteristics are described including the vortex roll-up, vortex transport, and vortex decay parameters.

4.1 VORTEX ROLL-UP

To determine the vortex roll-up parameters, the downwash field behind the B-747 aircraft was measured with the LDV operated in a constant-range arc-scan mode. In the typical arc-scan configuration, illustrated earlier in Fig. 13, the magnitude of the line-of-sight velocity component observed by the LDV was essentially a measure of the spanwise downwash distribution in the aircraft nearwake. Thus, from the magnitude of the LDV line-of-sight velocity distribution in the near wake the downwash and vortex formation and roll-up characteristics were determined.

4.1.1 Initial Spanwise Downwash Distribution

The magnitude of the peak line-of-sight velocity component, $\left|\mathrm{V}_{\mathrm{pk}}\right|$ ($\mathrm{m} / \mathrm{sec}$), from the high-speed data is shown as a function of lateral distance, $y(\mathrm{~m})$, in Figs. 13 through 16 for flybys $8,11,12$, and 13 , respectively, over the time interval $t=0$ to 8 sec . Each scan is defined as the period between two successive elevation angle reversals and is approximately 1 sec in duration. Occasionally, some overlapping occurs between successive scans due to limitations in the processing software. Therefore, successive scans shown in Figs. 13 tthrough 16 do not always have the same starting and ending limits, and, as a result, the lateral scales can be different. The direction and midtime of each scan is indicated in the figures. The lateral distance, y, was computed directly from the raw range, R, and raw elevation angle

Fig. $13-\left|\mathrm{V}_{\mathrm{pk}}\right|$ as a Function of Lateral Distance for Rosamond B-747 Flyby 8

Fig. 13 (Continued)

Fig.14- $\left|\mathrm{V}_{\mathrm{pk}}\right|$ as a Function of Lateral Distance for Rosamond B-747 Flyby 11

Fig. 14 (Continued)

$$
\stackrel{\rightharpoonup}{\square}
$$

-

Fig. $15-\left|\mathrm{V}_{\mathrm{pk}}\right|$ as a Function of Lateral Distance for Rosamond B-747 Flyby 12

Fig. 15 (Continued)

Fig. 15 (Continued)

Fig. $16-\left|\mathrm{V}_{\mathrm{pk}}\right|$ as a Function of Lateral Distance for Rosamond B-747
Flyby 13

Fig. 16 (Continued)
57

58

measurements, θ, where $y=-R \cos \theta$. This resulted in a nonlinear lateral scale at extended distances from the flight path centerline.

To illustrate the maximum downwash or upwash velocities in the aircraft near wake, the highest values of $\left|V_{p k}\right|$ occurring over 1 deg increments were faired by a smooth curve. The solid lines in the plots represent a faired curve through the highest LDV measurements given by the circles. Since the arc-scan measurements were made at an initial range equal or somewhat less than the airplane height, and since the maximum descent rate of the trailing vortices was on the order of $2 \mathrm{~m} / \mathrm{sec}$, the wake vortex remained essentially in the focal volume of the LDV system over the time period of 0 to 8 sec. Thus, the solid lines shown in Figs. 13 through 16 are indicative of the peak velocities observed with the LDV system in the aircraft near wake.

Available measurements of vortex lateral position obtained from a triangulation of simultaneous photographs or estimated from overhead photographs are also shown in Figs. 13, 14, and 15.

The spanwise downwash distribution for flyby 8, the 0 -spoiler configuration, shows a well defined double-peak signature in most of the plots shown in Fig. 13 which is suggestive of a coherent vortex. For example, in Fig. 13 at $t=2.2 \mathrm{sec}$, two broad peaks are observed separated by a spacing of 0.76 wingspan. The lack of signature in the inboard regions may be attribu ted to the lack of high velocities or aerosols near the flight path centerline. The two broad peaks become more well defined at later times ($t=3.3$ to 8.2 sec), showing a double-peak signature characteristic of the rotational velocity profile of a viscous vortex. The lateral separation and the maximum speed for the two double-peak signatures do not change significantly over this time range.

In contrast to the coherent wake structure observed earlier for the 0 -spoiler configuration (Fig. 13), the downwash field for flybys 11,12 and 13 where the two outer spoilers were deployed, shows a broad high amplitude region composed of narrower closely spaced peaks. This is suggestive of multiple
vortices and an incomplete vortex roll-up phase. These measurements indicate that the deployment of spoilers has a marked effect on the near-wake strucuture, tending to retard the early formation of a coherent trailing vortex pair. Analysis of the downwash field shown in Figs. 13 through 16 has been carried out to determine the basic characteristics of single and multiple vortices such as location, circulation strength, and the magnitude of the velocity component.

4.1.2 Vortex Pair Characteristics

For the 0 -spoiler configuration, the spanwise downwash distribution in the wake shows a well defined double-peak signature (Fig. 13). A double-peak signature is predicted theoretically when a vortex pair is interrogated in the arc-scan mode. For example, the magnitude of the line-of-sight velocity component for Rosamond flyby 11 at $t \sim 2 \mathrm{sec}$ assuming a fully rolled-up vortex pair is shown in Fig. 17. The magnitude of the line-of-sight velocity gener ated by a distribution of N line vortices with the LDV located at the origin is given by

$$
\begin{equation*}
\left|V_{\ell o s}\right|=\frac{1}{2 \pi} \sum_{n=1}^{N} \Gamma_{n} \frac{\left[\left(Y_{n}-Y_{0}\right) X_{0}+\left(X_{0}-X_{n}\right) Y_{0}\right]}{\left[\left(X_{0}-X_{n}\right)^{2}+\left(Y_{0}-Y_{n}\right)^{2}\right]\left[X_{n}^{2}+Y_{n}^{2}\right]^{1 / 2}} \tag{3}
\end{equation*}
$$

where (X_{0}, Y_{0}) is the location of the centroid of the focal volume, and $\left(X_{n}, Y_{n}\right)$ and Γ_{n} are the coordinate and circulation strength of the $n^{\text {th }}$ vortex, respectively.

In Fig. 17, the magnitude of the computed line-of-sight velocity is shown for a pair of line vortices with spacing $b^{\prime}=K b=41.8 \mathrm{~m}$ and circulation strength $\Gamma=U_{\infty} \bar{c} C_{L} / 2 K=606 \mathrm{~m}^{2} / \mathrm{sec}$ where the spanwise loading coefficient, wingspan, flight velocity, mean chord, and lift coefficient are taken to be $K=0.7, b=59.7 \mathrm{~m}$, $U=72.5 \mathrm{~m} / \mathrm{sec}, \overline{\mathrm{c}}=8.3 \mathrm{~m}, \mathrm{C}_{\mathrm{L}}=1.41$. The vortex pair was assumed to be located at an altitude of 180 m and the selected arc scan range was 183 m . The magnitude of the computed line-of-sight velocity for the vortex pair shows the characteristic double peak signatures noted earlier in the LDV measurements. The magnitude of the peak velocity is determined by the separation distance between

Fig. 17 - Magnitude of Line-of-Sight Velocity Component for Rosamond B- 747 Flyby 11 at $t \sim 2 \mathrm{sec}$, Computed Assuming a Fully
Rolled-Up Vortex Pair
the vortex pair and the scan arc. The slight asymmetry in the double peaks results from the velocity contribution of the adjoining vortex, the scan geometry, and the decrease in the contribution of the vortex rotational velocity along the line of sight at extended lateral distances from the centerline.

Note the two double-peak patterns in the $V_{l o s}$ distribution in Fig. 17 at $y= \pm 23 \mathrm{~m}$ which correspond to the approximate location of the two vortices. As the vortex pair is traversed by the arc-scan pattern, the peak tangential velocity, resolved about the line of sight, is observed giving rise to the closely spaced double peaks. When the vortex center is intersected exactly by the arc scan, the location of the peaks is a measure of the vortex position, the magnitude of the peaks is indicative of the magnitude of the peak tangential velocity in the core, and the lateral separation between the peaks is a measure of the vortex core diameter. If the vortex is below (or above) the arc-scan, as shown in the sample simulation in Fig. 17, the vortex position is bounded by the lateral location of the two peaks, the magnitude of the two peaks is less than the peak tangential velocity, and the lateral separation between the two peaks is a function of the separation distance between the vortex and the scan arc.

The magnitude of the predicted line-of-sight velocity shown in Fig. 17 agrees with the trends shown by the 0 -spoiler flyby (Fig. 13), while the 1,2 , 11, and 12-spoiler flybys (Figs. 14 to 16) are noticeably different. Since the LDV signature for flyby 8 is suggestive of a coherent vortex pair, it is useful to make a more detailed analysis of this case. From the seven scans shown in Fig. 13 the earliest scan showing the two double peak signatures was selected $(t=3.3 \mathrm{sec})$; the minimum points were used to determine the lateral position of the port vortex (vortex altitude was assumed to be the scan range $R=240 \mathrm{~m}$), and the peak velocity magnitudes observed by the LDV for the port vortex were plotted as a function of radius about the vortex center in Fig. 18. For compar ison, the magnitude of the velocity for a potential line vortex and a turbulent viscous vortex are also shown in Fig. 18 matched to the experimentally meas ured core circulation and core velocity.

LDV Measurements of Port Vortex, Flyby 8
Time $=3.3 \mathrm{sec}$
Core Radius $=4.5 \mathrm{~m}$
Circulation $=565 \mathrm{~m}^{2} / \mathrm{sec}$
O Starboard Scan
\square PortScan
Theory
Hoffman \& Joubert Model (Ref. 7)
$1 / \mathrm{r}$ Field for Line Vortex with Circulation
$\Gamma=565 \mathrm{~m}^{2} / \mathrm{sec}$

Fig. 18 - Magnitude of Wake Vortex Velocity Distribution with
0 Spoilers

The results in Fig. 18 indicate that the velocity distribution observed with the LDV is in general agreement with the theoretical model of Hoffman and Joubert near the core region of the vortex. In the outer flow region, the experimental velocity distribution decreases more rapidly than the theoretical logarithmic circulation model and approaches the $1 / r$ profile. However, sufficient scatter exists in the LDV data points to make a detailed comparison difficult, and agreement with other theoretical models is possible.

The circulation distribution derived from the vortex velocity distribution is shown in Fig. 19. Note that essentially all of the circulation is contained within the viscous core region of radius $r_{c}=4.5 \mathrm{~m}$ and of circulation $\Gamma_{c}=565 \mathrm{~m}^{2} / \mathrm{sec}$. This suggests that the vortex roll-up process is complete for the 0 -spoiler configuration at $t=3.3 \mathrm{sec}$. In comparison, the predicted vortex circulation strength for this flyby is $\Gamma=\frac{1}{2} U_{\infty} \overline{\mathrm{c}} \mathrm{C}_{\mathrm{L}} / \mathrm{K}=565 \mathrm{~m}^{2} / \mathrm{sec}$, where the flight velocity, mean wing chord, lift coefficient and spanwise loading coefficient, are given by $U_{\infty}=73.6 \mathrm{~m} / \mathrm{sec}, \overline{\mathrm{c}}=8.3 \mathrm{~m}, \mathrm{C}_{\mathrm{L}}=1.41, \mathrm{~K}=0.762$. The value of K was selected on the basis of the observed separation between the vortex pair. The circulation distribution predicted from the turbulent viscous vortex model using the observed core parameters is also shown in Fig. 19 where

$$
\begin{gathered}
\Gamma=\Gamma_{c} 1.83\left(\mathrm{r} / \mathrm{r}_{\mathrm{c}}\right)^{2} \\
\Gamma=\Gamma_{c}\left[1+2.14 \log _{10}\left(\mathrm{r} / \mathrm{r}_{\mathrm{c}}\right)\right]
\end{gathered}
$$

in the inner and outer core regions, respectively.

4.1.3 Multiple Vortex Characteristics

The spanwise downwash distributions for the $1,2,11$, and 12-spoiler configurations (Figs. 14 to 16) showed multiple closely spaced peaks which did not resemble the velocity distribution predicted for a coherent trailing vortex pair (Fig. 17). Since the multiple high-velocity peaks in the near wake downwash field are found in multiple vortex wakes; and the 1, 2, 11, and 12-spoiler configurations (flybys 11,12 , and 13) have been analyzed to identify possible multiple vortex characteristics.

Fig. 19 - Circulation as a Function of Radius for 0 Spoiler Flight

The magnitude line-of-sight velocity component predicted for a B-747 aircraft assuming the multiple vortices are shed from the inboard and outboard flaps and wing tips is presented in Fig. 20. The strength and lateral spacing of the multiple vortices given on the top of Fig. 20 were calculated from the modified Betz roll-up technique (Ref.9) and the altitude of the vortices was 180 m , and the arc scan range was 183 m . From the magnitudes of the velocity shown in Fig. 20 it is noted that the multiple vortices generate multiple peaks of varying magnitudes with the zero points occuring near the vortex locations. Assuming the LDV arc scan intersects the centers of the multiple vortices, the spacing and magnitudes of the multiple peaks can be used to deduce the location, strength, and magnitude of the peak velocity component of the wake vortices.

As an example, consider the profile shown in Fig. 14. Note that for the $1.5-\mathrm{sec}$ plot high velocity magnitudes are recorded, but the peaks are scattered and it is difficult to distinguish the location of the multiple vortices suggested in Fig. 20. At 2.6 sec the multiple peaks in Fig. 14 are more ordered and resemble the line-of-sight velocity magnitudes predicted by the multiple vortex model. For example, the starboard vortex occupies a broad region spanning from approximately 3 to 40 m from the centerline, and the zero points occur at $y \sim 0,10,15,22$, and 30 m at $t=2.6 \mathrm{sec}$ in Fig. 14, The superimposed predicted multiple vortex locations are at $y=3,10.4,14,21.3$, and 29.6 m (Fig. 20). Thus, the broad multiple peak regions in flyby 11 contain to some extent the multiple vortex peaks predicted from theory. A similar trend can be noted for the other 1, 2, 11, and 12 -spoiler cases. In Fig. 15 at $t=2.4 \mathrm{sec}$, the zero points on the starboard side are located at $y \sim 0,17,25$, and 32 m , and in Fig. 18 at $t=2.9 \mathrm{sec}$, the zero points on the port side occur at $y \sim 0,5,10$ and 18 m . Comparing all three $1,2,11$, and 12 spoiler runs, it is observed that minimums occur in the downwash velocity profile repeatedly for lateral spacings of $y \sim 0,10,15$, and 25 m from the wake centerline.

These results suggest that three or four merged vortices are present in the near wake for each semispan. A more detailed analysis of the LDV measurements may establish the strength and core radii of these vortices.
$\Gamma_{1}=62.3 \mathrm{~m}^{2} / \mathrm{sec}, \Gamma_{2}=433.5 \mathrm{~m}^{2} / \mathrm{sec}, \Gamma_{3}=-158.4 \mathrm{~m}^{2} / \mathrm{sec}, \Gamma_{4}=298 \mathrm{~m}^{2} / \mathrm{sec}, \Gamma_{5}=-16.2 \mathrm{~m}^{2} / \mathrm{sec}$
$\Gamma_{6}=-62.3 \mathrm{~m}^{2} / \mathrm{sec}, \Gamma_{7}=-433.5 \mathrm{~m}^{2} / \mathrm{sec}, \Gamma_{8}=158.4 \mathrm{~m}^{2} / \mathrm{sec}, \Gamma_{9}=-298 \mathrm{~m}^{2} / \mathrm{sec}, \mathrm{I}_{10}=16.2 \mathrm{~m}^{2} / \mathrm{sec}$
$y_{1}=29.6 \mathrm{~m}, x_{1}=180 \mathrm{~m}, y_{2}=21.3 \mathrm{~m}, x_{2}=180 \mathrm{~m}, y_{3}=14 \mathrm{~m}, x_{3}=180 \mathrm{~m}, y_{4}=10.4 \mathrm{~m}, x_{4}=180 \mathrm{~m}$,
$y_{5}=3 \mathrm{~m}, \mathrm{x}_{5}=180 \mathrm{~m}, \mathrm{y}_{6}=-29.6 \mathrm{~m}, \mathrm{x}_{6}=180 \mathrm{~m}, \mathrm{y}_{7}=-21.3 \mathrm{~m}, \mathrm{x}_{7}=180 \mathrm{~m}, \mathrm{y}_{8}=-14 \mathrm{~m}, \mathrm{x}_{8}=180 \mathrm{~m}$,
$y_{9}=-10.4 \mathrm{~m}, x_{9}=180 \mathrm{~m}, y_{10}=-3 \mathrm{~m}, x_{10}=180 \mathrm{~m}$
(Subscripts 1-5 Starboard Vortices, 6-10 Port Vortices)

Fig. 20 - Magnitude of Line-of-Sight Velocity Component for Rosamond B-747
Flyby 11 at $t \sim 2 \mathrm{sec}$, Computed Assuming Multiple Wake Vortices

However, the LDV measurements have shown that multiple vortices exist in the near wake of the B-747 aircraft when spoilers are deployed, whereas a coherent rolled-up trailing vortex pair exists in the near wake for 0 spoilers.

4.2 VORTEX TRANSPORT

The line-of-sight velocity measurements obtained by the LDV in the wake of the B-747 aircraft in the finger-scan mode have been processed to yield the altitude and lateral position of the vortices, and have been compared with photographic and theoretical wake trajectories. The following analysis of the vortex transport characteristics includes the early near-wake flow as well as the subsequent far-wake transport process.

4.2.1 Near-Wake Vortex Tracks

From the Rosamond wake measurements, those flybys where photographic measurements of the near-wake trajectory were available for comparison with the LDV tracks have been selected. The near wake was assumed to be the region within 20 spans downstream of the aircraft, $x / b \leq 20$.

The lateral versus horizontal wake vortex location 5 to 10 sec after aircraft passage is shown in Figs. 21 and 22. The LDV and photographic measurements indicate that the center of the wake vortex pair is located at approximately 80% semispan and descends at $\sim 1.5 \mathrm{~m} / \mathrm{sec}$ over the 4 to 10 sec interval. However, as much as a 15% scatter in the vortex lateral location and 50% scatter in the descent rate can be noted in the initial vortex trajectories which may be associated with uncertainties in the airplane location or may be due to the different flight configurations. The photographic measurements shown in Figs. 21 and 22 are in general agreement with the LDV trends.

4.2.2 Far Wake Vortex Tracks

The line-of-sight velocity measurements obtained with the LDV system in the finger-scan mode have been processed with the VAD and Vortex Track Program and the $I_{p k}$ program to determine the far-wake vortex trajectories.

Fig. 21 - Vortex Descent as a Function of Downstream Distance for Flybys with 30/30 Flaps, 0 Spoilers

Solid Symbols Photo, Open Symbols LDV Measurements

Flyby
O 27
$\diamond 28$
$\triangle 30$
 for Flybys with 30/30 Flaps, 0 Spoilers

The regions of the maximum backscatter intensity were used to locate the vortex core region. The wake vortex tracks from the Rosamond tests include the results from the low-speed data and high-speed data.

4.2.2.1 Low-Speed Data

The wake vortex trajectories from the low-speed LDV measurements are presented in Appendix D. From the wake vortex trajectories presented in Appendix D, the following wake transport characteristics can be noted: (1) the wake vortex descends nearly vertically with very little horizontal motion; (2) the initial descent rate over the period 0 through 20 sec after aircraft passage is in general agreement with the prediction; and (3) the wake descent diminishes after 20 sec and the vortex tends to remain at a constant altitude in ground effect. In addition to the above trends, some scatter is noted in the location of the vortices. Since both the photographic and LDV tracks show the vortex wandering in lateral position and altitude, particularly at late times, this is believed to be the effect of random atmospheric winds and gusts. However, in some cases, a large scatter is noted in the LDV vortex tracks which is not seen in the corresponding photographic measurements. This has been investigated using the high-speed data since accurate determination of the vortex position is a prerequisite in determining other relevant parameters such as the decay of the vortex rotational velocity and circulation strength.

4.2.2.2 High-Speed Data

The wake vortex tracks computed from the high-speed LDV data using the $I_{p k}$ algorithm are given in Appendix E for flybys $27,28,44,47,48$, and 49 . The vertical and lateral vortex trajectories computed from the high-speed data show the same trends as the low-speed tracks discussed earlier.

Comparison of the high-speed wake vortex measurements with the observed photographic vortex position is shown in the $V_{p k}$ versus elevation angle curves in Figs. 23 and 24. With the exception of any dominant low

Fig. 23 - Comparison of Photographic and LDV Measurements for Rosamond B-747 Flyby 27

8
-

Flyby 27
$\mathrm{T}=6.6 \mathrm{sec}$

$$
\begin{aligned}
& \text { Photo Port Vortex } \\
& T=50 \mathrm{sec}
\end{aligned}
$$

Fig. 23 (Continued)

Fig. 23 (Continued)

Fig. 23 (Concluded)
magnitude spikes, the solid line in the plots connects the maximum values of $\left|V_{\mathrm{pk}}\right|$ observed by the LDV in the finger scan mode for one scan between the two elevation angle limits (i.e., it represents the maximum value of $\left|V_{p k}\right|$ for many finger-scan lobes). Since the LDDV is scanned rapidly in range (3.5 Hz) and slowly in elevation angle $(0.2 \mathrm{~Hz})$, the peaks in the $\left|V_{p k}\right|$ versus elevation angle curves indicate the elevation angle at which the maximum line-of-sight velocity is observed by the LDV system. Thus, when a vortex is interrogated by the LDV system, two maxima occur in the $\left|V_{p k}\right| v e r s u s$ elevation angle at those angles where the line of sight is tangent to the vortex core and a minimum occurs at the mid-elevation angle, or in other words, a double-peak signature results. The low magnitude spike bounded by the high amplitude peaks marks the vortex core, and here, the minimum $\left|V_{p k}\right|$ points are connected. For a number of LDV measurements, this double-peak signature can be clearly recognized; for example, at $t=6.6,9.0$ and 14.1 sec for flyby 23 (Fig. 27) and at $t=4.2$ and 14.2 sec for flyby 28 (Fig. 24). In addition, the elevation angle at which these double-peak patterns occur is often within a few degrees of the vortex elevation angle measured photographically.

While the photographic and LDV measurements agree well for some scans in terms of the location of the vortex signature, for other scans, the scatter in elevation angle is as high a 6 deg (Fig. $24, \mathrm{t}=5$ and 9 sec). It is possible that the core diameter of the vortex is small, and the scan pattern misses the peak-tangential velocity regions. It is also possible that the photographic measurements may be subjected to some errors, or that the smoke does not mark the exact vortex location accurately. Lastly, the error may be a result of anomalies in the determination and processing of the LDV elevation angle.

4.3 VORTEX DECAY

Information regarding the decay of wake vortices such as the time history of the peak tangential velocity, circulation and viscous core radius is contained in the line-of-sight velocity magnitudes measured by the LDV system.

Fig. 24 (Continued)

Fig. 24 (Continued)

4.3.1 Decay of Vortex Rotational Velocity

To determine the decay of the wake vortex rotational velocity from the LDV line-of-sight velocity magnitudes, two basic methods were used to pick out the maximum tangential velocity of the vortex:
a. Selection of the maximum value of $\left|V_{p k}\right|$ (or $\left|V_{\mathrm{ms}}\right|$) occurring during each scan between minimum and maximum elevation settings.
b. Selection of the maximum value of $\left|V_{p k}\right|$ occurring within ± 3 deg of the known elevation angle of the vortex.

For both techniques, the maximum value of $\left|V_{p k}\right|$ is a good measure of the magnitude of the peak tangential velocity of the vortex if the LDV line of sight is tangent at some point with the circular core region of the vortex, and the vortex range falls within the focal volume. However, in the first approach, the $\left|V_{p k}\right|$ time history becomes meaningless if the vortex drifts out of the scan area. To eliminate this uncertainty, in the second approach, other information, i.e., photographic vortex position, is used to establish the approximate location of the vortices. These regions are then searched for the maximum $\left|V_{p k}\right|$ values which are associated with the vortex phenomena.

The $\left|V_{p k}\right|$ and $\left|V_{m s}\right|$ time histories determined using the first technique are shown in Appendix F. A bandwidth criterion of $N \geq 2$ was used in the analysis to filter out random high-frequency noise (i.e., at least two of the 100 frequency bins had to be activated for the data to be used). A sample of the results, presented in Fig. 25, indicates that the wake vortex rotational velocity is nearly constant approximately 50 spans downstream of the aircraft followed by $1 /$ time decay. Some scatter which may be associated with the uncertainty in vortex location may be noted in the velocity decay curve.

Using the photographic vortextracks to determine the approximate vortex location (the second technique above), the $\left|V_{p k}\right|$ time history has been

Fig. 25 - Decay of Magnitude of Wake Vortex Rotational Velocity Component for Flyby 44

Fig. $26-\left|V_{\mathrm{pk}}\right|$ as a Function of Time for Flyby 27 Using Photographic Tracks to Locate the Vortex Center

Fig. 28 - Vortex Core Radius as a Function of Time for Flyby 27

Fig. 29 - Vortex Core Radius as a Function of Time for Flyby 28

Fig. 30 - Vortex Core Radius as a Function of Time for Flyby 44

Fig. 31 - Comparison of Magnitude of Wake Vortex Rotational Velocity Component for B-747 Flybys With and Without Spoilers

Fig. 32 - Comparison of Magnitude of Wake Vortex Rotational Velocity Component for B-747 Flyby With and Without Flaps

Fig. 33 - Comparison of Magnitude of Wake Vortex Rotational Velocity Component for B-747 Flybys With and Without Gear Down

5. CONCLUSIONS

Laser Doppler velocimeter measurements of the wake vortex characteristics of a B-747 aircraft in various configurations have shown the following trends.

5.1 FOR VORTEX FORMATION:

a. The rollup of the vortex sheet occurred rapidly within a few spans downstream of the aircraft.
b. The observed location, spacing, and strength of the multiple vortices were in general agreement with theoretical rollup calculations.
c. The peak tangential velocity and circulation of the merged vortices remained nearly constant in the near wake.
d. The B-747 spoilers affected the vortices, producing vortices with large cores.

5.2 FOR VORTEX TRANSPORT;

a. The wake vortices descended vertically with little horizontal motion.

5.3 FOR VORTEX DECAY:

a. A decrease in the peak tangential velocity and circulation and an increase in the core radius was observed in the far wake.
b. Deployment of spoilers and flaps enhanced the vortex peak tangential velocity decay process in the near wake.

1. Krause, M. C., L. K. Morrison, C.E. Craven, N.A. Logan and T.R. Lawrence, "Development of Theory and Experiments to Improve Understanding of Laser Doppler Systems - Final Report," LMSC HREC TR D306632, Lockheed Missiles \& Space Company, Huntsville, Ala., June 1973.
2. Wilson, D.J., M.C.Krause, E.W. Coffey, C-C. Huang, B. B. Edwards, C.E. Craven, K.R. Shrider, J. L. Jetton and L.K. Morrison, "Development and Testing of Laser Doppler System Components for Wake Vortex Monitoring - Volume I - Scanner Development, Laboratory and Field Testing and System Modeling," LMSC-HREC TR D390159-I, Lockheed Missiles \& Space Company, Huntsville, Ala., August 1974.
3. Lawrence, T.R. et al., "Application of a Laser Velocimeter for Remote Wind Velocity and Turbulence Measurements," Proceedings of the International Conference on Aerospace and Aeronautical Meteorology, 2र-26 May 1972, Washington, D.C., The American Meteorological Society.
4. Brashears, M.R., T.R. Lawrence and A.D. Zalay, "Mobile Laser Doppler System Check Out and Calibration," FAA-RD-77-48, Lockheed Missiles \& Space Company, Huntsville, Ala., September 1976.
5. Garodz, L.J., D. M. Lawrence and N. J. Miller, 'Measurement of the Trailing Vortex Systems of Large Transport Aircraft, Using Tower Flyby and Flow Visualization," FAA-RD-75-127, NAFEC, Atlanta City, N.J., January 1976.
6. Bilbro, J. W., H. B. Jeffreys, E. A. Weaver, R. M. Huffaker, G. D. Craig, R.W. George, and P.J. Marrero, "Laser Doppler Velocimeter Wake Tests," FAA-RD-76-11 (also NASA TM X 64988), March 1976.
7. Hoffman, E.R., and P.M. Joubert, "Turbulent Line Vortices," J. Fluid Mech., Vol. 16, Part 3, July 1963, p. 395.
8. Snedeker, R.S., and A.J. Bilanin, "Analysis of the Vortex Wakes of the Boeing 727, Lockheed L-1011, McDonnell Douglas DC-10, and Boeing 747 Aircraft," ARAP Report No. 245, July 1975.
9. Brashears, M. R., N. A. Logan, S. J. Robertson, K. R. Shrider, and C. D. Walters, 'Analysis of Predicted Aircraft Wake Vortex Transport and Comparison with Experiment," FAA-RD-74-74, Lockheed Missiles \& Space Company, Hunts ville, Ala., April 1974.

Appendix A

EXTERNAL LOGS FOR ROSAMOND TESTS

A-1

Run ID		Spectrum Analysor						Scanner						Computer		Timo			azimuth 42° is normeal to runcway. Comments
No.	AC Type or VAD	$\begin{aligned} & \text { B. W. } \\ & \text { (kHz) } \end{aligned}$	$\frac{\mathrm{Log}}{\mathrm{Lin}}$	Freq. Span (MHz)			$\left.\begin{array}{c} \text { Rate } \\ (\mathrm{mece}) \end{array}\right)$	Range			Elovation			Tape No.	No. Recorda	Start	Stop		
				Min.	i_{c}	Max.		Max.	Min.	Rate	Max.	Min.	Rate						
1	VAD	10	LN	0	2 cm.	. 5	1							Derol		6:5700	-47:30	-st.	alt, d 31,46,61,76,91, 122,
																			244,488 at 1 Reu/alt.
2	VAD															2:50:00	2:59:00		same dts.
3	$A C 1$	30		1	0	2		57			63^{+15}	3	. $1 \mathrm{l} \mathrm{S}_{1}$			2:04:04	7:06:06		
4	AC 2	100		1		6							. 543			7:09:37	7:11:25		
5	AC 3															2.15:001	7:17:77		
6	AC 4			0	1 cm	5		60								2180:49	7.72:53		
7	AC 5							118			63	20				7:25:560	7:77:40		Time marK on suti; not hean Ak going 5-10 past 90°
8	AC 6	30						118			63	03				7:31:07	9:35:75		
9	$A C 7$										63	30				7:35:33	7:302		
10	AC 8							240			63	21				7,40:37	7:42:44		azimuth $180^{\circ}+42^{\circ}\left(\times 222^{\circ}\right)$
11	VAD	10		0		. 5	1									7:50:04	7:58:00		
12	AC 9	30		0	$1 / 2 \mathrm{~cm}$	5		58			63	63	. 5			8:12:49	8:15:7n		222° arimuth
13	AC 10							120			63	15				9ils 06	8:9:\%		
14	AC Il							183			63	25				$8: 2357$	B:75:39		
15	AC 12							240			62	35				8:27:21	8ial:a		
16	AC 13							57			62	03				8:35:07	8:36:3		
17	$A C 14$							5)								3:40132	Bi42:50		for ist min (oriongal this run.
18	$A C 15$							57								8:46:4	Bu48ic9		
19	AC 16							08								8:51:47	3:53141		
20	Vat	10		0	1.3 cm	. 5										8:58:00	9:07:02	${ }^{\text {ar mith }}$	ame ed. as rum 1.
21	$A C .11$	30		0	. 6 sm	5		35			62	03				9:32:12	9:33:32		Az, 42°. Corrected time code thei ron.
22	$A C D_{1}$															8:51:44	9:38:56		repent of previous van (vinil)
23	$A C B$															7int:	9:48:8.		

SAMPLE OUTPUT FROM VELOCITY AZIMUTH DISPLAY AND VORTEX TRACKER PROGRAM FOR ROSAMOND FLYBY 25

Page B-2 indicates the relative intensity (INT ENSITY) and $V_{m s}$ (SPEED (ft/sec)) of the LDV signal as a function of time and space for one sweep between the minimum and maximum elevation-angle setting in the finger-scan mode. A list of the data sorted according to INTENSITY is given on page B-3 followed by the list of the values selected for determining the vortex location on page B-4. A "scatter plot" showing the location of the intensity points in units of ft and their relative magnitude (on a scale of A to 0) is given on page B-5 along with the selected center of the two correlation circles (labeled Z) and the centroid of the correlation circles (the vortex locations labeled P and S for port and starboard, respectively). On page $B-6$, the points used in determining the vortex location are listed. The data are printed out on pages B-7 through B-12 and B-13 through B-17 for two other sample scans during flyby 25 . A summary of the port and starboard locations from each of the scans is given on pages B-18 through B-20. The vortex trajectories are displayed on the last two pages of Appendix B, including time versus lateral displacement of the vortices (page B-21) and time versus vertical location as a function of time (page B-22).

$N 2$	$R 2$
2	30.15
3	1355.06
4	1405.40
5	2727.49
6	171.75
7	1492.69
8	3453.66
9	3134.10
10	1796.11
11	1633.05
12	1798.91
13	1782.36
14	1556.26

ZC. 316.6

$2 C=$
229.4

B-6

 \checkmark

\cdots

ํํํํํ

 ニッ

[^1]

-

ज⿵⿰丿⺄⿱㇒⿵冂⿰入入一

PORT VORTEX

time	L	${ }^{r}$
4.05621	316.589	-81.6382
8.27676	357.333	-29.5650
13.8568	349.730	-34.7920
15.5002	258.296	-114.384
10.7123	323.249	-69.0965
20.6620	269.113	-123.139
24.3140	323.240	-60.4487
26.2645	273.360	14.0868
2908949	323.499	-74.6053
31.6056	232.370	-37.9057
34.7579	334.106	-23.4391
37-0064	243.742	-125.949
40.5472	289.022	-84.2635
42.5118	258.308	-105.767
45.4176	318.021	-45.9242
47.4121	269.746	-97.0168
51.1471	354.548	-20.3668
53.0743	237.969	-126.092
63.6145	297.511	-90.3922
09.2095	308.295	-82.9007

UNKNOWN TYPE OF VORTEX

		UNKNOWN TYPE
TIME	6	Y
2089089	286.775	31.5946
9.94257	297.216	-87.3446
56.5852	253.098	45.4470
58.5648	198.678	46.4100
61.9412	252.638	67.2202
67.1926	342.761	-. 433675
73.0118	342.916	-59.9073
77.9868	296.564	-91.7344
80.8926	$230 \cdot 220$	-141.526
84.0240	201.570	-43.6382
91.4552	235.385	-136.489
94.5179	262.498	-29.4438
96.8784	2480933	-124.571

Appendix C
 SAMPLE OUTPUT FROM NASA-MSFC LASER DOPPLER VELOCIMETER DATA PROCESSING ROUTINES FOR ROSAMOND FLYBY 47

Results from the Rosamond high-speed data are given on page C-2 including a printout of the relative intensity of the LDV signal (IPEAK) and the frequency (or velocity) of the flow field including $V_{m s}$ and $V_{p k}$ in units of meters per second (VMAX and VPEAK, respectively). The sweep count from the start of the flyby is shown by the column labeled SCAN while the lateral and vertical location and range and elevation angle of the focal volume are given by $X(m), Y(m), R(m)$, and $T(d e g)$, respectively. The time at which the LDV signal was sampled is contained in the frame count (1 FRAME $=1 / 500$ sec).

From the array of LDV sample points illustrated on page C-2, plots of VPEAK versus the scan elevation angle in degrees, THETA, are generated as illustrated on pages C-3 through C-6. Note that the characteristic double peak signature of the wake vortex is evident in the sample plots.

Applying the " I_{pk} " algorithm (p. 4-7 of Ref. 7) to the thre shold LDV spectrum illustrated above, the vortex location is determined. The vortex trajectory for flyby 47 as computed from the high speed data is shown on pages C-7 through C-9. On page C-7 the vertical and lateral motion of the vortices is given as a function of time, while page C-8 shows the altitude versus lateral position of the wake vortex. Page C-9 lists the vortex locations. For additional information regarding the vortex location, criteria, and coefficients used in the " I_{pk} " algorithm and shown in the plots, refer to Ref. 7.

Note that the coordinate system used in the NASA-MSFC data processing routines is not the same as the coordinate system used in the text earlier. The runway centerline is located at $\mathrm{y}=-200 \mathrm{ft}$ in the NASA plots.

$S C A N=3$

SCAN $=4$
:

SCAN $=5$

$\operatorname{SCAN}=6$

Appendix D

WAKE VORTEX TRACKS COMPUTED FROM LOW-SPEED MEASUREMENTS

The circles, triangles and diamond symbols represent the port, star board and undefined vortex, respectively. For each flyby, the predicted wake vortex trajectory assuming zero crosswind is shown by the solid lines. The vortex tracks were computed from the predicted model described in Ref. 10 for a circulation strength of $\Gamma=662 \mathrm{~m}^{2} / \mathrm{sec}$ and an initial vortex spacing of $b^{\prime}=41.8 \mathrm{~m}$. Available photographic and acoustic measurements also appear on the plots, the solid circles and triangles representing the former and the $x^{\prime} s$ the latter measurements. The dashed line is a smooth curve drawn through the photographic vortex tracks.

Fig. D-1 - Wake Vortex Trajectory for Rosamond Flyby 23

\triangle Starboard Vortex

Fig. D-2 - Wake Vortex Trajectory for Rosamond Flyby 24
D-4

Fig. D-2 - (Concluded)
D-5

LDV Measurement

O Port Vortex
\triangle Starboard Vortex

Fig. D-3 - Wake Vortex Trajectory for Rosamond Flyby 25

LDV Measurement
v
O Port Vortex
\triangle Starboard Vortex
-

Fig. D-3 - (Concluded)

Fig. D-4 - Wake Vortex Trajectory for Rosamond Flyby 27

Fig. D-4 - (Concluded)

\square Port Vortex
X Starboard Vortex Theory

Fig. D-5 - Wake Vortex Trajectory for Rosamond Flyby 28

Fig.D-5 - (Concluded)

Fig. D-6 - Wake Vortex Trajectory for Rosamond Flyby 29

3
LDV Measurement
O Port Vortex
\triangle Starboard Vortex
-
-
-

Fig.D-6-(Concluded)

Fig. D-7 - Wake Vortex Trajectory for Rosamond Flyby 30

LDV Measurement

©
O Port Vortex
\triangle Starboard Vortex
.

Fig.D-7-(Concluded)

Fig. D-8 - Wake Vortex Trajectory for Rosamond Flyby 40

Fig. D-9 - Wake Vortex Trajectory for Rosamond Flyby 42

IDV Measurement

a

```
O Port Vortex
Starboard Vortex
```

*

Fig. D-9 - (Concluded)

LDV Measurement

O Port Vortex
\triangle Starboard Vortex

Fig. D-10 - Wake Vortex Trajectory for Rosamond Flyby 44

Fig. D-10 - (Concluded)

Fig. D-11 - Wake Vortex Trajectory for Rosamond Flyby 46

LDV Measurement

O Port Vortex
\triangle Starboard Vortex

Fig. D-11-(Concluded)

Fig. D-12 - Wake Vortex Trajectory for Rosamond Flyby 47

	Photorraphic Measurement	MAVSS	Theory
LDV Measurement	Port Vortex	Port Vortex	Predictive Model
O Port Vortex		X Starboard Vo	
\triangle Starboard Vortex	- Starboard Vortex		

Fig. D-12 - (Concluded)

Fig. D-13 - Wake Vortex Trajectory for Rosamond Flyby 48

Fig. D-13 - (Concluded)

Fig. D-14-Wake Vortex Trajectory for Rosamond Flyby 49
a

Fig. D-14 - (Concluded)

Appendix E
WAKE VORTEX TRACKS COMPUTED FROM HIGH-SPEED MEASUREMENTS

The measurements obtained with the NASA high-speed filter bank and processor and software system are summarized in this appendix. The output consists of three plots: (1) vortex altitude versus time; (2) lateral distance versus time; and (3) altitude versus lateral distance. A listing of the vortex locations is given in a table following the three phots. The port and starboard vortices are indicated by ($0 *$) and ($\%$) on the altitude and lateral distance versus time plots. The vortices are labeled by letters A to Z on the lateral distance plots (each pair of letters corresponds to a successive elevation scan frame).

3

∞

ず

 an
PORT POS

T？ME

天
$F L Y-B Y$
$R=59$
cia

pi

$$
R=77
$$

FR DATA Cor

$$
\frac{0}{8}
$$

$$
\begin{aligned}
& \underset{6}{3} \\
& \vdots=2
\end{aligned}
$$

$$
0
$$

ペロ

 M

10
$\underset{-\infty}{0}$

デ
 －品ひ

亿a
w
w
气。
ㄴ．
0 －

뜬

Fig. F-1 $-\left|\mathrm{V}_{\mathrm{pk}}\right|$ as a Function of Time for Rosamond B-747 Flyby 24
(from High-Speed Data)

$$
F-1
$$

Fig. F-2 $-\left|V_{m s}\right|$ as a Function of Time for Rosamond B-747 Flyby 24 (from Low-Speed Data)

$$
F-2
$$

Fig. F-3 $-\left|V_{\mathrm{ms}}\right|$ as a Function of Time for Rosamond B-747 Flyby 24 (from High-Speed Data)

$$
F-3
$$

Fig.F-4-|V $\mathrm{V}_{\mathrm{ms}} \mid$ as a Function of Time for Rosamond B-747 Flyby 25
(from Low-Speed Data)
F-4

Fig. F-5 - $\left|\mathrm{V}_{\mathrm{pk}}\right|$ as a Function of Time for Rosamond B-747 Flyby 27 (from high speed data)

$$
\mathrm{F}-5
$$

Fig. F-6 - $\left|\mathrm{V}_{\mathrm{ms}}\right|$ as a Function of Time for Rosamond B-747 Flyby 27 (from High-Speed Data)

$$
F-6
$$

$-$

3

Fig. F-7-| $\mathrm{V}_{\mathrm{pk}} \mid$ as a Function of Time for Rosamond B-747 Flyby 28 (from High-Speed Data)

Magnitude of Velocity Component, ($\mathrm{m} / \mathrm{sec}$)

Fig.F-9-| $\mathrm{V}_{\mathrm{ms}} \mid$ as a Function of Time for Rosamond Flyby 29
(from Low-Speed Data)

$$
F-9
$$

Fig. F-11- $\left|V_{\mathrm{ms}}\right|$ as a Function of Time for Rosamond B-747 Flyby 35 (from Low-Speed Data)

Fig. F-12-| $\mathrm{V}_{\mathrm{ms}} \mid$ as a Function of Time for Rosamond B-747 Flyby 38 (from Low-Speed Data)

Fig. F-13 - $\left|\mathrm{V}_{\mathrm{pk}}\right|$ as a Function of Time for Rosamond B-747 Flyby 44 (from High Speed Data)

$$
F-13
$$

Fig. F-14 $-V_{m s} \mid$ as a Function of Time for Rosamond B-747 Flyby 44

Fig. F-15 - $\left|\mathrm{V}_{\mathrm{pk}}\right|$ as a Function of Time for Rosamond B-747 Flyby 47 (from High-Speed Data)

Fig. F-16 - $\left|\mathrm{V}_{\mathrm{ms}}\right|$ as a Function of Time for Rosamond B-747 Flyby 47
(from High-Speed Data)

3
p
i

12

Fig. F-17-|V $V_{\text {ms }} \mid$ as a Function of Time for Rosamond B-747 Flyby 47 (from Low-Speed Data)

$$
F-17
$$

Fig. F-18- $\left|\mathrm{V}_{\mathrm{pk}}\right|$ as a Function of Time for Rosamond B-747 Flyby 48
(from High-Speed Data)

-

Fig. F-21 - $\left|\mathrm{V}_{\mathrm{pk}}\right|$ as a Function of Time for Rosamond B-747 Flyby 49 (from High-Speed Data)

Fig.F-22-| $\mathrm{V}_{\mathrm{ms}} \mid$ as a Function of Time for Rosamond B-747 Flyby 49
(from High-Speed Data)
E-2.2

Fig. G-1 - Observed Circulation Time History for Rosamond B-747 Flyby 24

Fig. G-2 - Observed Circulation Time History for Rosamond B-747 Flyby 25

\because

Fig. G-3 - Observed Circulation Time History for Rosamond B-747 Flyby 27

$$
G-3
$$

Fig. G-4 - Observed Circulation Time History for Rosamond B-747 Flyby 28
G-4

Fig. G-5-Observed Circulation Time History for Rosamond B-747 Flyby 29

Fig. G-6 - Observed Circulation Time History for Rosamond B-747 Flyby 30

$$
G-6
$$

\rightarrow

Fig.G-7 - Observed Circulation Time History for Rosamond B-747 Flyby 44, Starboard Vortex
G-7

Fig. G-8 - Observed Circulation Time History for Rosamond B-747 Flyby 47

$$
G-8
$$

Fig. G-9 - Observed Circulation Time History for Rosamond B-747 Flyby 48

Fig. G-10 - Observed Circulation Time History for Rosamond B-747 Flyby 49

In accordance with the objectives of the contract, wake vortex and wind measurements were carried out at the Rosamond, California, test site with a scanning laser Doppler velocimeter system, and the LDV measurements were processed, reduced, and analyzed. The contract objectives were met, and no invention, discovery, or innovation was found.

WU.S. GOVERNMENT PRINTING OFFICE: 1977-701-663/179

Appendix H

REPORT OF INVENTIONS

[^0]: LDG: Aircraft descending along imaginary glideslope.
 TO: Aircraft ascending as in actual takeoff.

[^1]:

 : M

